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Introduction 23 

Improving mathematics access and outcomes in California requires that each 24 

classroom, transitional kindergarten through grade twelve (TK–12), is an equitable and 25 

engaging mathematics environment that supports all students. How a teacher creates 26 

and sustains that environment is the focus of this chapter. It expands on the five 27 

components of instructional design, introduced in chapter one, that encourage equitable 28 

outcomes and active student engagement: teaching big ideas; using open tasks; 29 

teaching toward social justice; supporting students’ questions and conjectures; and 30 

prioritizing reasoning and justification. 31 

Instruction that incorporates these components can enable a diverse group of students 32 

to see themselves as mathematically capable individuals with curiosity and a love of 33 

learning that they will carry throughout their schooling. 34 
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The Need for Greater Equity and Engagement 35 

All California teachers strive to ensure that every child has an equitable opportunity to 36 

succeed. But mathematics achievement data show that, on average, this effort is not 37 

resulting in the success we want for our students. Figure 2.1 below shows data from the 38 

California Assessment of Student Performance and Progress (CAASPP) test for the 39 

2014–15 through 2021–22 school years for all students and selected sub-groups 40 

(American Indian or Alaska Native students, Asian students, Black or African American 41 

students, Filipino students, Hispanic or Latino students, Native Hawaiian or Pacific 42 

Islander students, White students, students of two or more races, economically 43 

disadvantaged students, English learners, students with disabilities, and foster youth).1 44 

Across all tested grades, about a third (33.38 percent) of all students tested in 2021–22 45 

met or exceeded the mathematics standard for their grade level—down from about 40 46 

percent of students in the 2018–19 school year, before the start of the COVID-19 47 

pandemic. The differences between White and Asian students and other student sub-48 

groups shown in the figure are stark. Prior to the pandemic, except for White and Asian 49 

students, fewer than 30 percent of students in each sub-group met or exceeded the 50 

standard, and all groups lost ground between 2019 and 2022. 51 

Figure 2.1 California Assessment of Student Performance and Progress: Percentage of 52 

Students Meeting or Exceeding Standards, Mathematics 53 

 

 

1 Data for the 2019–20 school year are not available because statewide assessments 
were suspended during the first year of the pandemic. Data for the 2020–21 school year 
are for the subset of students who took the CAASPP assessment in that year. See 
https://www.cde.ca.gov/ta/tg/ca/documents/assessmentresultsguide21.docx for more 
information. 

https://www.cde.ca.gov/ta/tg/ca/documents/assessmentresultsguide21.docx
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 54 

Group 2015 2016 2017 2018 2019 2020* 2021* 2022 

American Indian or 
Alaska Native 

22 26 25 26 27 [blank] 19 21 

Asian 69 72 73 74 74 [blank] 69 69 

Black or African 
American 

16 18 19 20 21 [blank] 18 16 

Filipino 52 57 57 58 60 [blank] 53 54 

Hispanic or Latino 21 24 25 27 28 [blank] 20 21 

Native Hawaiian or 
Pacific Islander 

27 31 31 32 33 [blank] 27 25 

White 49 53 53 54 54 [blank] 45 48 

Two or More Races 49 52 53 54 55 [blank] 47 47 

Economically 
Disadvantaged 

21 23 25 26 27 [blank] 20 21 

English Learner 11 12 12 13 13 [blank] 8 10 
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Group 2015 2016 2017 2018 2019 2020* 2021* 2022 

Students with 
Disability 

9 11 11 12 13 [blank] 11 11 

Foster Youth [blank] [blank] [blank] [blank] [blank] [blank] [blank] 10 

Source: California Department of Education (CDE), n.d.a. 55 

California high school graduation rates and the percentage of students meeting 56 

University of California/California State University (UC/CSU) requirements also show 57 

substantial differences among student sub-groups, as shown in figure 2.2. For example, 58 

whereas a majority of white and Asian students met the UC/CSU requirements in 2020-59 

21, less than a quarter (23.98%) of graduating American Indian or Alaska Native 60 

students and only about one third of graduating African American (30.78%) and 61 

Hispanic or Latino (36.00%) students met the UC/CSU requirements. The data show 62 

that although there are graduation rate disparities among student groups, the disparities 63 

are wider with respect to UC/CSU eligibility, a finding that suggests that students' 64 

dramatically different in-school experiences have powerful implications for their future 65 

opportunities. 66 

Figure 2.2 2021–22 Four-Year Adjusted Cohort Graduation Rate 67 

Race/Ethnicity Cohort 
Students 

Cohort 
Graduation 
Rate 

Percentage of Cohort 
Students Meeting 
UC/CSU 
Requirements 

African American 26,811 78.6% 41.3% 

American Indian or Alaska 
Native 

2,580 78.8% 30.4% 

Asian 47,100 95.2% 77.7% 

Hispanic or Latino 273,928 84.7% 43.5% 

White 111,065 90.6% 57.2% 

Source: CDE, n.d.b. 68 
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At the higher education level, there are longstanding gaps among student groups in 69 

STEM enrollment and completion. While the number of female, Latino, and African 70 

American students enrolled in STEM fields in California’s public higher education 71 

system has grown over the past decade, a 2019 report found that “both nationally and in 72 

California, female and underrepresented minority (URM) students are underrepresented 73 

in STEM overall and are highly underrepresented in particular STEM fields, including 74 

engineering and computer science” (California Education Learning Lab, 2019, 2). The 75 

report found that in the UC system in 2016-17, African American students and Latino 76 

students accounted for only 1.3 percent and 15 percent, respectively, of bachelor’s 77 

degrees in STEM fields. In the CSU system, African Americans students accounted for 78 

only 2 percent and Latino students accounted for only 27 percent of bachelor’s degrees 79 

in STEM fields. (California Education Learning Lab, 2019). 80 

This evidence makes clear that, on average across the state, the opportunities being 81 

provided and the approaches being employed in TK–12 classrooms, schools, and 82 

districts are not resulting in equitable student mathematics success. Across their TK–12 83 

years, students in California and across the country experience differences in 84 

opportunities to learn associated with the quality of curriculum and teaching they 85 

encounter. These differences begin early and are too often related to racial and 86 

economic inequalities in school resources (Carpenter et al., 2014; Clements and 87 

Sarama, 2014; Turner and Celedón-Pattichis, 2011). These opportunity gaps impact 88 

student outcomes differentially (Carter and Welner, 2013; Conger et al., 2009; OECD, 89 

2014; Goodman, 2019; Hanushek et al., 2019; Long et al., 2012; Reardon et al., 2018).  90 

While circumstances outside of school influence equity and social mobility (Reardon, 91 

2019), the National Council of Supervisors of Mathematics (NCSM) and its affiliate 92 

organization TODOS: Mathematics for All point to data showing that school systems 93 

play a role in helping to correct the current state of math education, increase equity, and 94 

ensure the highest quality mathematics teaching and learning (NCSM and TODOS, 95 

2016). These mathematics leaders assert that equitable opportunities and outcomes for 96 

all students require systemic change. Educators at all levels need to take action to 97 

challenge deficit thinking, draw on—rather than exclude—students’ identities and 98 
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cultural backgrounds, and create classrooms that foster active instead of passive 99 

learning experiences. 100 

To support educators in taking such action, the sections below begin by addressing 101 

three dimensions of systemic change that are particularly important for effective 102 

mathematics instruction. The bulk of the chapter then details five components of 103 

instructional design that encourage equitable outcomes and active student engagement. 104 

Three Dimensions of Systemic Change That Support 105 

Mathematics Instruction 106 

Three dimensions of systemic change that are particularly important for effective 107 

mathematics instruction are: an assets-based approach to instruction; active student 108 

engagement through investigation and connection; and instruction that centers cultural 109 

and personal relevance, reflecting California’s diverse students. These practices 110 

undergird the discussion of the five components of equity and engagement that follows. 111 

An Assets-Based Approach to Instruction 112 

This framework asserts that California educators need opportunities to learn about, 113 

experiment with, and effectively use pedagogical approaches that recognize students’ 114 

assets. Educators need to build classroom environments where all students’ ideas are 115 

valued. Resources such as the Funds of Knowledge framework, developed by Moll et 116 

al. (1992), support teachers in learning ways to use students’ existing skills, 117 

experiences, and (cultural) practices as a knowledge/assets base on which to attach 118 

new instructional content and experiences. 119 

Building a Culture of Access and Equity 120 

“Creating, supporting, and sustaining a culture of access and equity requires being 121 

responsive to students' backgrounds, experiences, cultural perspectives, traditions, and 122 

knowledge when designing and implementing a mathematics program and assessing its 123 

effectiveness. Acknowledging and addressing factors that contribute to differential 124 
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outcomes among groups of students are critical to ensuring that all students routinely 125 

have opportunities to experience high-quality mathematics instruction, learn challenging 126 

mathematics content, and receive the support necessary to be successful. 127 

“Addressing equity and access includes both ensuring that all students attain 128 

mathematics proficiency and increasing the numbers of students from racial, ethnic, 129 

linguistic, gender, and socioeconomic groups who attain the highest levels of 130 

mathematics achievement.” 131 

-National Council of Teachers of Mathematics (NCTM),2014a 132 

While more research and empirical testing of assets-based pedagogies is needed 133 

(NCTM Research Committee, 2018), existing research suggests that using students’ 134 

funds of knowledge can help capture students’ imaginations and foster deeper 135 

understanding of domain knowledge (Lee, 2001; Rogoff, 2003). It can also help new 136 

learning “stick” (Hammond, 2021), increase student motivation, and perhaps support 137 

more equitable student achievement (Boykin and Noguera, 2011; NCTM Research 138 

Committee, 2018; Möller et al., 2020; Rivas-Drake et al., 2014). Given such evidence, 139 

the National Council of Teachers of Mathematics urges educators to move toward a 140 

culture of equity by enacting these pedagogies (see NCTM statement in box). 141 

Active Engagement Through Investigation and Connection 142 

In addition to an assets-based instructional approach, a longstanding body of research 143 

in the fields of education and psychology shows that students learn best through active 144 

engagement with mathematics and one another (Bransford et al., 2005; Freeman et al., 145 

2014; Maaman et al., 2022; Wong et al., 2003). As discussed in chapter one, this 146 

framework highlights active engagement in classrooms by way of mathematical 147 

investigation and connection. Instructional design is guided by the why, how, and what 148 

of mathematics—for example, the three Drivers of Investigation encompass the “why” of 149 

math: to make sense of the world, predict what could happen, or impact the future. The 150 

tasks teachers design thus elicit students’ curiosity, leverage students’ knowledge, and 151 

provide motivation to engage deeply with authentic mathematics. 152 

https://www.ingentaconnect.com/content/jnp/ct/2003/00000018/00000001/art00006;jsessionid=4d29c1ibv4fwn.x-ic-live-02
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Research has produced a wealth of information showing that mathematics learning, 153 

understanding, and enjoyment comes from such active engagement with mathematical 154 

concepts––that is, when students are developing mathematical curiosity, asking their 155 

own questions, reasoning with others, and encountering mathematical ideas in 156 

multidimensional ways. This can occur through engagement with numbers but also 157 

through visuals, words, movement, and objects, and considering the connections 158 

between them (Boaler, 2019a; Cabana, Shreve, and Woodbury, 2014; Louie, 2017; 159 

Hand, 2014; Schoenfeld, 2002). The Universal Design for Learning (UDL) guidelines 160 

outline a multidimensional guide that benefits all students and can be particularly useful 161 

when applied to mathematics. (Later sections of this chapter elaborate on ways in which 162 

UDL can support equity and engagement.) 163 

When students are engaged in meaningful, investigative experiences, they can come to 164 

view mathematics, and their own relationship to mathematics, far more positively. By 165 

contrast, when students sit in rows watching a teacher demonstrate methods before 166 

reproducing them in short exercise questions unconnected to real data or situations, the 167 

result can be mathematical disinterest or the perpetuation of the common perspective 168 

that mathematics is merely a sterile set of rules. 169 

Students benefit from viewing mathematics as a vibrant, interconnected, beautiful, 170 

relevant, and creative set of ideas. As educators create opportunities for students to 171 

engage with and thrive in mathematics and value the different ways questions and 172 

problems can be approached and learned, many more students view themselves as 173 

belonging to the mathematics community (Boaler, 2016; Langer-Osuna, 2014; Walton et 174 

al., 2012). Such an approach prepares more students to think mathematically in their 175 

everyday lives and helps society develop many more students interested in and excited 176 

by Science, Technology, Engineering, and Mathematics (STEM) pathways. 177 

Cultural and Personal Relevance 178 

As noted above, California’s diverse student population brings to schools a broad range 179 

of interests, experiences, and cultural assets. Cultural and personal relevance is 180 

important for learning and also for creating mathematical communities that reflect 181 
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California’s diversity. Educators can learn to notice, utilize, and value students’ 182 

identities, assets, and cultural resources to support learning for all students. 183 

Additionally, because culture and language can be intertwined, attending to cultural 184 

relevance may also enable teachers to attend to linguistic diversity – a key feature of 185 

California and relevant to the teaching and learning of mathematics (Moschkovitch, 186 

1999, 2009, 2014). 187 

This framework offers ideas for teaching in ways that create space for students with a 188 

wide range of social identities to access mathematical ideas and feel a sense of 189 

belonging to the mathematics community. A multitude of supports available to California 190 

teachers to ensure that the state’s large population of language learners and 191 

multilingual students can learn and thrive include many referenced in this framework: 192 

California’s English Language Development Standards (ELD Standards) (CDE, 2012), 193 

the California Department of Education’s advice for integrating the ELD Standards into 194 

mathematics teaching (CDE, 2021a), the principles of UDL (CAST, 2018), and the 195 

California Department of Education’s advice for asset-based pedagogies (CDE, 2021b.) 196 

Additional examples can be found in Darling’s (2019) framework, including ideas about 197 

strategically grouping students for language development, making work visual, and 198 

providing opportunities for pre-learning. 199 

Five Components of Equitable and Engaging Teaching for All 200 

Students 201 

California’s diverse classrooms include students from a wide range of differing 202 

backgrounds whose experiences in a mathematical practice or content area also vary 203 

widely. Moreover, across backgrounds, students learn in a wide variety of ways. How 204 

does a teacher create an equitable and engaging mathematics environment that 205 

supports all students to reach their academic potential? 206 

The following sections describe five important components of classroom instruction that 207 

can meet the needs of students who are diverse in so many ways: 1) plan teaching 208 
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around big ideas; 2) use open, engaging tasks; 3) teach toward social justice; 4) invite 209 

student questions and conjectures; 5) prioritize reasoning and justification. 210 

Each component is based on research and supported by practice, and each is aligned 211 

with the three ideas shared above about moving toward instruction that is asset-based, 212 

supportive of students’ active investigation and connection-making, and culturally and 213 

personally relevant for students. The approaches presented here are aligned with other 214 

important resources, such as the Teaching for Robust Understanding (TRU) Framework 215 

(TRU Framework, 2018), NCTM’s Catalyzing Change series of books, as well as the 216 

Access and Equity: Promoting High Quality Access Series from NCTM. Relevant books 217 

include The Impact of Identity in K–8 Mathematics (by Julia Aguirre, Karen Mayfield and 218 

Danny B Martin), Teaching Math to Multilingual Students (by Kathryn Chavl and 219 

colleagues), and Teaching Math to English Learners (by Debra Coggins). 220 

Component One: Plan Teaching Around Big Ideas 221 

As discussed in chapter one, the first component of equitable, engaging teaching—222 

planning teaching around big ideas—lays the groundwork for enacting the other four. 223 

Mathematics is a subject made up of important ideas and connections. Standards and 224 

textbooks tend to divide the subject into smaller topics, but it is important for teachers 225 

and students at each grade level to think about the big mathematical ideas and the 226 

connections between them (Nasir et al., 2014). 227 

Planning teaching around big ideas is a way for teachers to engage students’ initial 228 

understandings and draw on their diverse assets, since students may engage with and 229 

demonstrate understanding of big ideas in different ways. By planning to teach the big 230 

ideas of mathematics and designing lessons that develop important content and 231 

mathematical practices, teachers are able to build on many ideas that arise from 232 

students during instruction, draw out students’ understandings, and help individuals and 233 

the class as a whole shape mathematical ideas into understandings that reflect the 234 

connected concepts and knowledge in the discipline (NASEM, 2000). 235 
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The big ideas approach to instruction contrasts with planning only around small, 236 

discrete, or disconnected topics in mathematics. Rather than seeking only to 237 

understand whether students can accurately demonstrate algorithmic proficiency on a 238 

single problem type, teachers hold a broader view of how students might demonstrate 239 

their mathematical knowledge and understanding. If students do not produce an 240 

expected algorithmic response, teachers look for the assets underlying their thinking, to 241 

build on what they do understand. Focusing only on small, discrete instructional topics 242 

may also limit students’ ability to connect an idea with their initial understanding, and 243 

thus may interfere with their ability to grasp new concepts and information or retain 244 

conceptual understanding (NASEM, 2000). 245 

Although various big ideas are present in TK–12 mathematics, and many teachers may 246 

themselves envision different major themes in the standards, this framework sets forth 247 

the notion of big idea teaching in two important ways. First, instruction is designed to 248 

connect the why, the how, and the what of mathematics, as described in chapter one. 249 

The three Drivers of Investigation (DIs) address why the math at hand is relevant. The 250 

eight Standards for Mathematical Practice (SMPs) describe how students engage with 251 

mathematics. And the four Content Connections (CCs) describe what overarching 252 

topics and connections will be learned [see below for content big ideas]). 253 

Secondly, instruction is guided by a focused set of big ideas, organized by grade level 254 

and CA CCSSM content standards. Created as part of the California Digital Learning 255 

Integration and Standards Guidance initiative (CDE, 2021c), these grade level big 256 

ideas, presented in subsequent chapters, are organized by Content Connections and 257 

include multiple CA CCSSM content standards, as illustrated for grade six in figures 2.3 258 

and 2.4, below. Figure 2.3 is a network diagram of the big ideas (circular nodes) and the 259 

connections between them (line segments). Each network diagram is followed by a 260 

table such as figure 2.4 indicating the Content Connections and the relevant content 261 

standards for each big idea. 262 

Figure 2.3 Grade Six Map of Big Ideas 263 
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 264 

Long description of figure 2.3 265 

Note: The sizes of the circles vary to give an indication of the relative importance of the 266 

topics. The connecting lines between circles show links among topics and suggest ways 267 

to design instruction so that multiple topics are addressed simultaneously. 268 

Figure 2.4 Grade Six Content Connections, Big Ideas, and Standards 269 
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Content 
Connection 

Big Idea Grade 6 Standards 

Reasoning with 
Data 

Variability in Data SP.1, SP.5, SP.4: Investigate real world data 
sources, ask questions of data, start to understand 
variability - within data sets and across different 
forms of data, consider different types of data, and 
represent data with different representations. 

Reasoning with 
Data 

The Shape of 
Distributions 

SP.2, SP.3, SP.5: Consider the distribution of data 
sets - look at their shape and consider measures of 
center and variability to describe the data and the 
situation which is being investigated. 

Exploring 
Changing 
Quantities 

Fraction 
Relationships 

NS.1, RP.1, RP.3: Understand fractions divided by 
fractions, thinking about them in different ways 
(e.g., how many 1/3 are inside 2/3?), considering 
the relationship between the numerator and 
denominator, using different strategies and visuals. 
Relate fractions to ratios and percentages. 

Exploring 
Changing 
Quantities 

Patterns inside 
Numbers 

NS.4, RP.3: Consider how numbers are made up, 
exploring factors and multiples, visually and 
numerically. 

Exploring 
Changing 
Quantities 

Generalizing with 
Multiple 
Representations 

EE.6, EE.2, EE.7, EE.3, EE.4, RP.1, RP.2, RP.3: 
Generalize from growth or decay patterns, leading 
to an understanding of variables. Understand that a 
variable can represent a changing quantity or an 
unknown number. Analyze a mathematical situation 
that can be seen and solved in different ways and 
that leads to multiple representations and 
equivalent expressions. Where appropriate in 
solving problems, use unit rates. 

Exploring 
Changing 
Quantities 

Relationships 
Between 
Variables 

EE.9, EE.5, RP.1, RP.2, RP.3, NS.8, SP.1, SP.2: 
Use independent and dependent variables to 
represent how a situation changes over time, 
recognizing unit rates when it is a linear 
relationship. Illustrate the relationship using tables, 
4 quadrant graphs and equations, and understand 
the relationships between the different 
representations and what each one communicates. 

Taking Wholes 
Apart, Putting 
Parts Together 

Model the World NS.3, NS.2, NS.8, RP.1, RP.2, RP.3: Solve and 
model real world problems. Add, subtract, multiply, 
and divide multi-digit numbers and decimals, in real-
world and mathematical problems - with sense 
making and understanding, using visual models and 
algorithms. 
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Content 
Connection 

Big Idea Grade 6 Standards 

Taking Wholes 
Apart, Putting 
Parts Together 

& 

Discovering 
Shape and Space 

Nets and Surface 
Area 

EE.1, EE.2, G.4, G.1, G.2, G.3: Build and 
decompose 3-D figures using nets to find surface 
area. Represent volume and area as expressions 
involving whole number exponents. 

Discovering 
Shape and Space 

Distance and 
Direction 

NS.5, NS.6, NS.7, G.1, G.2, G.3, G.4: Students 
experience absolute value on numbers lines and 
relate it to distance, describing relationships, such 
as order between numbers using inequality 
statements. 

Discovering 
Shape and Space 

Graphing Shapes G.3, G.1, G.4, NS.8, EE.2: Use coordinates to 
represent the vertices of polygons, graph the 
shapes on the coordinate plane, and determine side 
lengths, perimeter, and area. 

Teachers’ beliefs about mathematics influence how mathematics is taught and in turn, 270 

students’ perception of the discipline. Productive beliefs enable teachers to enact 271 

effective and equitable mathematics teaching practices (NCTM, 2020). As shown in 272 

figure 2.5, it can be productive to expose students to a range of strategies and 273 

approaches for problem solving, and those are more easily elicited when teachers 274 

organize instruction around big ideas. Doing so provides students with different points of 275 

access, based on their prior knowledge. It also helps teachers move beyond the 276 

unproductive notions that mathematical ideas and understandings should be 277 

sequentially organized in the same manner for all students or that algorithms that must 278 

be memorized. 279 

Figure 2.5 Beliefs About Teaching and Learning Mathematics 280 

Unproductive beliefs Productive beliefs 

Mathematics learning should focus 
primarily on practicing procedures and 
memorizing basic number combinations. 

Mathematics learning should focus on 
developing understanding of concepts 
and procedures through problem solving, 
reasoning, and discourse. 



16 

Unproductive beliefs Productive beliefs 

Students need only to learn and use the 
same standard computational algorithms 
and the same prescribed methods to 
solve algebraic problems. 

All students need to have a range of 
strategies and approaches from which to 
choose in solving problems, including, but 
not limited to, general methods, standard 
algorithms, and procedures. 

Students can learn to apply mathematics 
only after they have mastered the basic 
skills. 

Students can learn mathematics through 
exploring and solving contextual and 
mathematical problems. 

Source: NCTM, 2014b. 281 

Rather than focusing on specific procedures and memorization, instruction is more 282 

effective when teachers aim to develop understanding of bigger ideas and procedures. 283 

(See also the section below on open tasks). NCTM’s Principles to Action (NCTM, 284 

2014b) posits that teachers should use big mathematical ideas to establish clear goals 285 

that guide lesson planning, instruction, and reflection. The goals help articulate the 286 

mathematics that students are learning (in a lesson, over a series of lessons, or 287 

throughout a unit). Teachers identify how the goals fit within a mathematics learning 288 

progression. They help students understand instructional goals and see how the current 289 

work contributes to their learning. Approached this way, big ideas help make learning 290 

progressions across grade levels clearer and support coherence of the curriculum within 291 

and across grade levels. Moreover, a focus on big ideas helps teachers identify and 292 

utilize the assets that learners bring to the classroom and helps students see how the 293 

range of their responses fit within a big idea. 294 

Component Two: Use Open, Engaging Tasks 295 

Besides linking numerous mathematics understandings into a coherent whole, the big 296 

ideas of mathematics provide a focus for student investigations (Charles, 2005)—the 297 

authentic activities, or projects that are the backbone of teaching the big ideas. Rather 298 

than being focused on one way of thinking or one right answer, student investigations 299 

rely on open tasks—that is, tasks that engage students in multidimensional exploration 300 

and investigation, drawing from their own knowledge and interests. Open tasks enable 301 
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students to learn mathematics by meaningfully engaging in mathematical experiences 302 

that are visual, physical, and numerical and employ multiple representations and forms 303 

of expression (Foote and Lambert, 2011; Lambert and Sugita, 2016; Moschkovich, 304 

1999; Boaler and LaMar, 2019). For example, students can be asked to design 305 

wheelchair ramps, plan a new school garden, or survey peers to find out how they have 306 

been impacted by distance learning. 307 

Open tasks allow all students to work at levels that are appropriately challenging for 308 

them, within the content of their grade. By contrast, tasks that are closed ask narrow, 309 

focused questions that include only some students in the appropriate cognitive 310 

challenges. Teachers should aim to provide tasks that have a “low floor and a high 311 

ceiling,” meaning that any student can access the task but the task allows student to 312 

extend their thinking into a range of mathematical ideas (Boaler, 2016; Krainer, 1993). 313 

The math task analysis framework from Stein and colleagues (2000) shown in figure 2.6 314 

offers helpful descriptions of two types of narrow, low cognitive demand tasks—those 315 

that require only memorization or procedures without connections—and two types of 316 

open, high cognitive demand tasks—those in which students employ mathematical 317 

procedures with connections or do mathematics tasks. Too many students in California 318 

are not provided ample opportunities to consistently engage with open tasks that have 319 

high cognitive demand (The Education Trust, 2018). Yet closed tasks can still be useful 320 

to provide practice opportunities for students. Teachers should thus consider the 321 

frequency and manner in which they use closed tasks. And all tasks, regardless of their 322 

cognitive demand, should be offered based on the instructional goals. 323 

Figure 2.6 The Task Analysis Guide 324 
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Lower-Level Demands Higher-Level Demands 

Memorization Tasks 

• involve either reproducing 
previously learned facts, rules, 
formulae or definitions OR 
committing facts, rules, formulae or 
definitions to memory. 

• cannot be solved using procedures 
because a procedure does not 
exist or because the time frame in 
which the task is being completed 
is too short to use a procedure. 

• are not ambiguous. Such tasks 
involve exact reproduction of 
previously-seen material and what 
is to be reproduced is clearly and 
directly stated. 

• have no connection to the 
concepts or meaning that underlie 
the facts, rules, formulae or 
definitions being learned or 
reproduced. 

Procedures with Connections Tasks 

• focus students’ attention on the 
use of procedures for the purpose 
of developing deeper levels of 
understanding of mathematical 
concepts and ideas. 

• suggest pathways to follow 
(explicitly or implicitly) that are 
broad general procedures that 
have close connections to 
underlying conceptual ideas as 
opposed to narrow algorithms that 
are opaque with respect to 
underlying concepts. 

• usually are represented in multiple 
ways (e.g., visual diagrams, , 
symbols, problem situations). 
Making connections among 
multiple representations helps to 
develop meaning. 

• require some degree of cognitive 
effort. Although general 
procedures may be followed, they 
cannot be followed mindlessly. 
Students need to engage with the 
conceptual ideas that underlie the 
procedures in order to successfully 
complete the task and develop 
understanding. 
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Lower-Level Demands Higher-Level Demands 

Procedures Without Connection Tasks 

• are algorithmic. Use of the 
procedure is either specifically 
called for or its use is evident 
based on prior instructions, 
experience, or placement of the 
task. 

• require limited cognitive demand 
for successful completion. There is 
little ambiguity about what needs 
to be done and how to do it. 

• have no connection to the 
concepts or meaning that underlie 
the procedure being used. 

• are focused on producing correct 
answers rather than developing 
mathematical understanding. 

• require no explanations or 
explanations that focuses solely on 
describing the procedure that was 
used. 

Doing Mathematics Tasks 

• require complex and non-
algorithmic thinking (i.e., there is 
not a predictable, well-rehearsed 
approach or pathway explicitly 
suggested by the task, task 
instructions, or a work-out 
example). 

• require students to explore and 
understand the nature of 
mathematical concepts, 
processes, or relationships. 

• demand self-monitoring or self-
regulation of one’s own cognitive 
processes. 

• require students to access relevant 
knowledge and experiences and 
make appropriate use of them in 
working through the task. 

• require students to analyze the 
task and actively examine task 
constraints that may limit possible 
solution strategies and solutions. 

• require considerable cognitive 
effort and may involve some level 
of anxiety for the student due to 
the unpredictable nature of the 
solution process required. 

Source: Stein et al., 2000 325 

The following open task example, “Four 4s,” illustrates how an open task can support 326 

the development of big ideas, positive mathematical classroom norms, content 327 

standards, mathematical practices, and English language development. This task may 328 
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be most useful for third and fourth graders, but it may also be meaningful for younger 329 

and older students. 330 

An Open Task Example: Four 4s 331 

Task Prompt: How many numbers can you create that have values between 1 and 20 332 

using exactly four 4s and any operation? 333 

Opportunities Supported Standards 

Opportunities 
for 
Mathematics 
Content 
Learning 

Grade levels at which the task might be used, with (selected) 
mathematical big ideas and associated content standards: 

• K – Being flexible within 10 (OA.1, OA.3) 

• 1 – Equal Expressions (OA.1, OA.3), Tens & Ones (NBT.3) 

• 2 – Skip Counting to 100 (NBT.3), Number Strategies (OA.1) 

• 3 – Number Flexibility to 100 (OA.1, OA.3, NBT.3), Fractions 
as Relationships (NF.3) 

• 4 – Fraction Flexibility (NF.3, NF.4, NF.5, OA.1), Multi-Digit 
Numbers (NBT 3) 

• 5 – Fraction connections (NF.3, NF.4, NF.5, NBT.3) 

• 6 – Generalizing with Multiple Representations (EE.6) 

Opportunities 
for 
Mathematics 
Practices 
Learning 

Standards for Mathematical Practice 

• SMP.1 – Make sense of problems & persevere in solving 
them 

• SMP.2 – Reason abstractly and quantitatively 

• SMP.3 – Construct viable arguments & critique the reasoning 
of others 
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Opportunities Supported Standards 

Opportunities 
for Language 
Development 
and Teacher 
Actions 

ELD Standard Part 1 – Interacting in meaningful ways 

A. Collaborative (engagement in dialogue with others) 

Teacher actions might include: allow time for struggle; ask: 

● How could you get started on this problem? 

● What does it mean that “any operation” is allowed? 

● What does this symbol (parentheses, equal sign, fraction bar) 
mean to you? 

Source: Youcubed, n.d. 334 

Another popular example of how teachers can use open tasks is number talks. In a 335 

number talk, a teacher might ask the class of students to work out the answer to 18 × 5 336 

mentally, then solicit the different answers that students may have found and write them 337 

on the board. After the different answers are collected teachers can ask if anyone would 338 

like to explain their thinking. Ideally, different students will share different ways of 339 

thinking about the problem, with visual, as well as numerical solutions. Chapter three 340 

provides further discussion of and resources for number talks. (For further guidance on 341 

implementing open tasks and on the teacher and student actions that might be 342 

demonstrated see NCTM’s Principles to Actions [2014]). 343 

Open tasks support student engagement in mathematics in multiple ways, notably 344 

including the following three: 345 

Open tasks can support access and flexible mathematical thinking. Open tasks 346 

have the potential to broaden access to mathematics because they are grounded in 347 

authentic and meaningful contexts—real life issues students actually wonder about—348 

and thus provide multiple ways for students to begin thinking about the mathematics of 349 

the task. Students can engage with the mathematics through many different pathways 350 

and tools. Moreover, classroom discussions are enhanced by the range of strategies 351 

and perspectives that students offer. For example, when students discuss connections 352 



22 

between direct modeling and more abstract reasoning strategies, students who may 353 

previously have relied on one strategy benefit. Those using direct modeling approaches 354 

might start to notice connections to more abstract ideas, helping them to think more 355 

flexibly and build understanding. Similarly, students utilizing more abstract strategies 356 

benefit from conceptually connecting those ideas to more concrete representations, 357 

drawings, or even other abstract approaches. With open tasks, teachers can take an 358 

assets-based approach to understand the mathematics that students bring to a task. 359 

The diversity of mathematical thinking that then arises in the classroom can support 360 

students’ conceptual understanding and strategic reasoning (National Research 361 

Council, 2001; Stein and Smith, 2018). 362 

Open tasks can support teachers’ formative assessment. Open tasks provide 363 

teachers with opportunities to listen carefully, make sense of student thinking, and 364 

assess formatively as the lesson progresses. Teachers can thus make in-the-moment 365 

adjustments to support student learning and differentiate instruction. Such formative 366 

assessment begins with teachers selecting a rich task and anticipating how their 367 

individual students, with diverse mathematical strengths, might access and approach 368 

the task and how they might plan their instruction accordingly (Smith and Stein, 2018). 369 

(NCTM’s 2014 Principles to Actions offers guidance on how to select tasks and support 370 

student discussions around rich tasks.) 371 

During the lesson, teachers can use classroom discourse to listen closely to students’ 372 

thinking (Cirillo and Langer-Osuna, 2018). They make use of the questions they have 373 

prepared in advance to support all students to learn the content. As surprises occur, 374 

teachers can also improvise additional questions and prompts that might support 375 

emerging understanding and enable students to communicate the mathematics more 376 

coherently. In short, teachers can be responsive to each students’ thinking, rather than 377 

evaluating students’ thinking along narrow dimensions of success. This creates 378 

opportunities to meet students where they are in their learning, the in-the-moment work 379 

of teaching (Munson, 2018). 380 
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(Chapter eleven provides further discussion of how the use of open tasks enables 381 

teachers to gather important information about students’ learning. Chapter twelve 382 

discusses California’s evolving comprehensive assessment system that support this 383 

framework’s vision of mathematics teaching and learning.) 384 

Open tasks can support linguistically and culturally diverse learners, and learners 385 

with identified learning differences. Open tasks can enable students with a range of 386 

different learning and linguistic skills to demonstrate their initial thinking in various ways 387 

(i.e., numerically, symbolically, verbally, visually, or through physical action; Darling, 388 

2019; CAST, 2018; Lambert and Sugita, 2016). They thereby support the alignment of 389 

instruction with the outcomes of the California ELD Standards and the UDL Guidelines. 390 

To support participation of linguistically and culturally diverse English learners, teachers 391 

might listen for the mathematical ideas being expressed by students, noticing how 392 

students might draw on multiple language bases (i.e., translanguaging) or extra-393 

linguistic communication, such as gesturing and using representation (Moschkovich, 394 

1999, 2013). Teachers can thus attend to students’ mathematical ideas rather than 395 

focusing on correcting vocabulary and can listen carefully to know when to provide more 396 

substantial support for students at the Emerging level of English proficiency 397 

(Moschkovich, 2013). For example, the teacher could use revoicing to ensure that 398 

students understand a specific term under discussion (e.g., one-digit, two-digit). She 399 

could ask a direct question such as, “Mary said this is a two-digit number” as she points 400 

to a number. “Is this a two-digit number?” (Lagunoff et al., 2015). By revoicing and 401 

rephrasing students’ statements, the teacher allows the student the right to evaluate the 402 

correctness of the teacher’s interpretation. Revoicing also helps keep the discussion 403 

mathematical by reformulating the statement in ways closer to the standard 404 

mathematics discourse. For example, a teacher might say, “So I hear you say that this 405 

shape is not a triangle because it has four sides and triangles only have three sides. Is 406 

that right?” 407 

While using open tasks, teachers can also support linguistically and culturally diverse 408 

language learners by strategically grouping students together for language 409 
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development. During small group and whole class discussion, students have 410 

opportunities to participate as audience members for classmates’ presentations and 411 

explanations of their models and strategies. Through limited prompting and strategic 412 

support from the teacher, students determine whether their peers have used correct 413 

mathematical terminology when describing their processes. They also learn about ways 414 

their explanations could have been improved. 415 

Effectively designing and implementing open tasks offers more ways for students to 416 

actively engage in mathematics and allows them to see how their perspectives and 417 

ideas can be assets in their own and their peers’ learning. As the UDL Guidelines 418 

shown in figure 2.7 show, open tasks offer students multiple ways to access the 419 

mathematical content (see also Lambert, 2020). Rachel Lambert and others have 420 

described strategies to support the participation of students with identified learning 421 

differences to share their thinking: 422 

● Including paraprofessionals in the instruction allows students opportunities to 423 

rehearse and share their thinking in preparation for whole-class discussion 424 

(Baxter et al., 2005). This functions similarly to a think-pair-share completed prior 425 

to whole-class discussion. 426 

● Creating a classroom culture where all students can and do readily access 427 

resources––like math notebooks, media apps and websites, and manipulatives––428 

whenever they need them. Some students may use particular resources more 429 

often or for longer amounts of time than other students during whole class 430 

discussions and benefit from being able to draw on them as necessary (Foote 431 

and Lambert, 2011). 432 

● Asking follow-up questions to set up the expectation and the support for students 433 

to be accountable to explaining their strategies. (Lambert and Sugita, 2016). 434 

Instruction with open tasks can thus support differentiated learning, where progress is 435 

built upon students’ current understandings, allowing them to address any previously 436 

unfinished learning even as they advance their thinking in powerful ways. When 437 

teaching focuses on such inclusive approaches, progress for each student, not 438 
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perfection, is the goal. Strategies that support students with identified learning 439 

differences ultimately create a positive learning environment for all students. 440 

The vignette A Personalized Learning Approach demonstrates an open-ended task that 441 

all students can access and that extends to sufficient depth that all students remain 442 

challenged (that is, a “low floor, high ceiling” task). 443 

Figure 2.7 Universal Design for Learning Guidelines 444 

 445 

Long description of Universal Design for learning framework is available at 446 

https://udlguidelines.cast.org. 447 

http://staging.cde.ca.gov/ci/ma/cf/documents/mathfwappendixcsbe.docx
https://udlguidelines.cast.org/
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Component Three: Teach Toward Social Justice 448 

Mathematics is a tool that can be used to both understand and impact the world. But too 449 

often students believe mathematics is not for them (Bishop, 2012; Darragh, 2015). 450 

Research shows that social and cultural contexts play a role in learners’ sense of 451 

belonging in mathematics classrooms. Additionally, learning environments enable or 452 

hinder whether and how students see themselves as doers of mathematics who believe 453 

that mathematics has a role in their lives (Lerman, 2000; Gutiérrez, 2013). Both 454 

mathematics educators and mathematics education researchers argue that teaching 455 

toward social justice can play an important role in shifting students’ perspectives on 456 

mathematics as well as their sense of belonging as mathematics thinkers (Xenofontos, 457 

2019). 458 

This framework discusses teaching toward social justice in two parts. First, it involves 459 

creating opportunities for students to both see themselves, as well as people from all 460 

backgrounds, as capable and successful doers of mathematics (Su, 2020). Second, 461 

teaching toward social justice urges educators to empower learners with tools to 462 

examine inequities and address important issues in their lives and communities through 463 

mathematics (Xenofontos et al., 2021; Goffney, Gutiérrez and Boston, 2018; Gutiérrez, 464 

2009). 465 

Creating opportunities for students to see themselves and others as 466 

mathematically competent. This concept is about building positive mathematical 467 

identities, beginning at the pre-kindergarten level. Teachers of young children use play 468 

to open opportunities for students to engage in non-routine problem solving, practice 469 

perseverance, and connect mathematical ideas (Chao and Jones, 2016, 17; Parks, 470 

2015; Wager, 2013) Through activities centered around play, teachers can create 471 

spaces for children to see their backgrounds represented in mathematics. Young 472 

students can thereby develop powerful mathematical identities and critical mathematics 473 

agency in ways that honor and connect to their own family and cultural histories. For 474 

example, the Number Book Project (Esmonde and Caswell, 2010) asked 475 

kindergarteners and their families to share number stories, songs, and games that 476 
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parents or others knew as children, with the idea of designing classroom activities 477 

around these number stories, songs, or games. 478 

Learning is not just a matter of gaining new knowledge—it is also about growth and 479 

identity development. As teachers introduce mathematics to students, they are helping 480 

them shape their sense of themselves as people who engage with numbers in the world 481 

(Langer-Osuna and Esmonde, 2017). Teaching mathematics through discussions and 482 

activities that broaden participation, lower the risks associated with contributing, and 483 

position students as thinkers and members of the classroom community are powerful 484 

ways to support students in seeing themselves as young mathematicians. Even in 485 

classrooms that utilize these approaches, however, stereotypes are often in play, 486 

impeding efforts to create robust, productive, and inclusive sense-making mathematics 487 

classroom communities (Langer-Osuna, 2011; Milner and Laughter, 2015; Shah, 2017). 488 

Teachers need to work consciously to counter racialized or gendered ideas about 489 

mathematics achievement (Joseph, Hailu, and Boston, 2017). 490 

Teachers can begin with awareness that mathematics plays a role in the power 491 

structures and privileges that exist within our society and can support action and 492 

positive change. Teachers can support discussions that center mathematical reasoning 493 

rather than issues of status and bias by intentionally defining what it means to do and 494 

learn mathematics together in ways that include students’ languages, experiences, and 495 

interests. One way to do this is by emphasizing and welcoming students’ families into 496 

classroom discussions (González, Moll, and Amanti, 2006; Turner and Celedón-497 

Pattichis, 2011; Moschkovich, 2013). 498 

Teaching in culturally responsive ways that acknowledge and draw on students’ 499 

backgrounds, histories, and funds of knowledge enable students to feel a sense of 500 

belonging (Brady et al., 2020; Gonzalez, Moll, and Amanti, 2006; Hammond, 2020; Moll 501 

et al., 1992). Students see mathematics as a set of lenses on the world relevant to their 502 

own lives. Although there is overlap with multicultural education, the type of culturally 503 

responsive teaching envisioned here extends far beyond considerations of food, music, 504 

and folklore; it is foundational to helping students acknowledge, understand, and 505 
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participate, both within the communities that they belong to and in the broader 506 

communities that they aspire to belong to. An eight-point framework for culturally 507 

responsive teaching developed by Muñiz (2019) aligns very closely with ideas of 508 

teaching toward social justice, including suggestions such as: reflect on one’s cultural 509 

lens; bring real-world issues into the classroom; and model high expectations for all 510 

students. 511 

Culturally responsive teaching can be implemented in mathematics by exploring 512 

students’ lives and histories and designing and implementing curricula that center 513 

contributions that historically marginalized people have made to mathematics. Teachers 514 

can create opportunities for themselves and their students to share autobiographies as 515 

mathematics doers and learners, thereby creating spaces for students to participate as 516 

authors of their mathematical learning experiences. 517 

Multicultural children’s literature can also be used to connect learning mathematics with 518 

students’ cultural experiences (Esmonde and Caswell, 2010; Leonard, Moore, and 519 

Brooks, 2013). For example, in The Great Migration: An American Story (Lawrence and 520 

Myers, 1995), young children explore quantity in terms of population shifts. In First Day 521 

in Grapes (Perez, 2002), a boy from a family of migrant workers uses his knowledge of 522 

mathematics to earn the respect of his peers. Drawing on The Black Snowman 523 

(Mendez, 1989), students can explore money problems through contexts linked to the 524 

African Diaspora. One Grain of Rice (Demi, 1997) offers students a context for exploring 525 

exponents and the importance of sharing food through the story of a peasant girl who 526 

tricks a king into giving her the royal storehouse’s entire supply of rice. Multicultural 527 

Mathematics Materials by Marina Krause (2000) also includes several games and 528 

activities that draw on Hopi and Navajo materials. 529 

In the snapshot below, the teacher emphasizes the importance of communicating 530 

mathematical ideas and attending and responding to the mathematical ideas of others 531 

across languages. (Relevant big ideas and standards include DI1, CC3, SMP.3, 6; and 532 

4.OA.4, 5.) This snapshot comes out of classroom research on the participation of 533 

linguistically and culturally diverse English learners in mathematical discussions (Turner 534 
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et al., 2013). It documents an actual classroom experience. The teacher and students 535 

(grades four and five) are discussing multiplicative relations using a paper-folding task 536 

where students folded a piece of paper to make 24 equal parts. Note how the teacher 537 

and class members engage with Ernesto’s thinking about the mathematics in this task. 538 

Ernesto is an English learner. By focusing attention on his reasoning, the teacher is 539 

validating his status as a contributor to the mathematical discourse within the class. 540 

Snapshot: Engaging with an English Learner’s Mathematical Thinking 541 

Teacher: Ernesto, ¿nos dices cómo lo hiciste? (Ernesto, would you tell us how you 542 

solved it?) 543 

Ernesto: Lo doblé cinco veces, a la misma (I folded it five times, the same way—) 544 

[Stands up to come to the front of the room] 545 

Teacher: [Hands Ernesto a piece of paper to show his folds] A ver, escúchenlo. (Let’s 546 

see. Let’s listen to him.) 547 

Ernesto: Lo doblé. cinco veces, igual. Así. (I folded it five times, equally. Like this.) 548 

[Folds paper five times in the same direction, using an accordion-like fold] [Unfolds 549 

paper] Y me da seis partes. (And it gives me six parts.) 550 

Teacher: His idea is to fold it five times, five times, and you get six parts. Does anyone 551 

have something to say to Ernesto? What do you think of how he did that? Anybody 552 

agree? [pause] Anybody else do it that way? 553 

Corinne: It’s different from ours, because he folded it five times to make six parts, and 554 

we—all three of us [the students who shared previously]—folded it in half, and [then] 555 

three times to make six parts. 556 

Teacher: So, you noticed some way that Ernesto’s strategy is a little bit different. 557 

Reflection: The classroom community could be relied on to translate for others, and the 558 

emphasis remained on positioning all learners as thinkers and as members of the same 559 

community. In doing so, students who historically are marginalized in mathematical 560 
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discussions––in this case, English Learners—were positioned as contributors and 561 

thinkers alongside their English-speaking peers. Further, students from dominant 562 

cultures—in this case monolingual English speakers––had the opportunity to engage 563 

with the mathematical ideas of typically silent students, to take their ideas into 564 

consideration, and to build on and make connections to their mathematical thinking. 565 

(end snapshot) 566 

Empowering students with tools to examine inequities and address important 567 

issues in their lives and communities (Berry et al., 2020; Gutstein, 2003, 2006). In 568 

this second aspect of teaching for social justice, teachers use mathematics to analyze 569 

and discuss issues of fairness and justice and to make mathematics relevant and 570 

engaging to students. In an elementary school classroom this might include students 571 

studying counting and comparing to understand fairness in the context of current and 572 

historical events (Chao and Jones, 2016). For example, in the fifth-grade Water Project, 573 

mathematics helped students explore questions of justice by incorporating topics of 574 

volume, capacity, operations, and proportional reasoning as students explored their 575 

families’ access to and usage of water in developing countries (Esmonde and Caswell, 576 

2010). Relatedly, teachers in Flint, Michigan, used the crisis of unsafe water in that city 577 

to connect a personally relevant and meaningful situation to their mathematics lessons 578 

(Plumb et al., 2017). The teachers asked, “How many water bottles does our class need 579 

each day?” and facilitated a mathematical exploration in which students estimated and 580 

calculated whether the number of water bottle donations reported in the news was 581 

sufficient to meet the needs of the school. 582 

As further described in chapter five, teachers’ use of rich, open tasks that include 583 

opportunities for students to connect mathematics to their lives can also support the 584 

foundational development of data literacy, where students are asking investigative 585 

questions, collecting, considering, and analyzing data, and communicating findings (see 586 

also Franklin and Bargagliotti, 2020). When grappling with data, students can pose 587 

questions about issues that matter to them, ranging from water quality to such issues as 588 

cyber bullying, neighborhood resources, or sports and recreation. Data related to issues 589 
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can draw not only from a range of mathematical ideas and student curiosities but also 590 

from a range of feelings about relevant, complex issues. A focus on complex feelings 591 

aligns with trauma-informed pedagogy, which highlights the importance of allowing 592 

students to identify and express their feelings as part of mathematics sense-making, 593 

and to allow students to address what they learn about their world by suggesting 594 

recommendations and taking action (Kokka, 2019). 595 

Mathematics lessons that incorporate open tasks and the use of real-world data can 596 

thus create opportunities for teachers to find out about their students’ cultures, interests 597 

and experiences. At the same time, these lessons can provide contexts that help 598 

students understand mathematics as a tool for participating meaningfully in their 599 

communities and for seeing patterns that exist throughout the world. Meanwhile, as 600 

teachers gain knowledge about their students’ interests and cultures, they become 601 

better math teachers, able to choose, craft, and launch tasks that engage students with 602 

big ideas in meaningful and relevant ways (Aguirre, 2012; Ladson-Billings, 2009; 603 

Hammond, 2020). 604 

Mathematics educators committed to social justice work provide curricular examples 605 

that equip students with a toolkit and mindset to identify and combat inequities with 606 

mathematics (Gutstein, 2006; Gutstein and Peterson, 2005; Moses and Cobb, 2001). 607 

Tasks have been developed to help students read and write the world with 608 

mathematics. First, students read the world by learning to use mathematics to highlight 609 

inequities. They then write the world—in other words, they learn to change it with 610 

mathematics (Gutstein, 2003; 2006). Note that these tasks correspond to Drivers of 611 

Investigation DI 1(making sense of the world), DI 2 (predicting what could happen), and 612 

DI3 (Impacting the future). 613 

While the ideas of teaching toward social justice are not new, they are newly 614 

emphasized in this framework. One useful resource for teachers as they become 615 

familiar with these ideas is The Teaching Maths for Social Justice Network (TMSJN, 616 

n.d.). TMSJN provides information on approaches and how they might be related and 617 
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used in tandem—e.g., integrating open tasks, assets-based instruction, and culturally 618 

relevant pedagogy—to support equitable mathematics classrooms. 619 

Component 4: Invite Student Questions and Conjectures 620 

Since open tasks about big ideas in mathematics foster curiosity, teachers can invite 621 

that curiosity by making space for students’ questions and conjectures. Students asking 622 

or posing mathematical questions is one of the most important yet neglected 623 

mathematical acts in classrooms—not questions to help move through a problem, but 624 

questions sparked by wonder and intrigue (Duckworth, 2006). For example, “What is 625 

half of infinity?” “Is zero even or odd?” “Does the pattern that describes the border of a 626 

square work if the shape is a pentagon?” Questions sparked by curiosity might sound 627 

like they’re pushing back on the ideas in play in the classroom, since students may 628 

begin questions with, “But what about…?” or “But didn’t you just say…?” But such 629 

questions should be valued and students given time to explore them. They are 630 

important in the service of creating active, curious mathematical thinkers. 631 

Students given the opportunity to explore big ideas through open tasks become 632 

mathematically curious and are well primed to engage in another important act: making 633 

a conjecture. Most students in science classrooms know that a hypothesis is an idea 634 

that needs to be tested and proven. The mathematical equivalent of a hypothesis is a 635 

conjecture. When students are encouraged to come up with conjectures about 636 

mathematical ideas, and the conjectures are discussed and investigated by the class, 637 

students come to realize that mathematics is a subject that can be explored deeply and 638 

logically. It is through conjectures that curiosity and sense-making are nurtured. 639 

Teachers invite student questions and conjectures when they teach by way of open, 640 

engaging tasks that focus on big ideas. The Drivers of Investigation, centered in this 641 

framework, are intended to spark students’ curiosity and prompt them to develop 642 

conjectures as they work on investigations with the goals of “making sense of the 643 

world,” “predicting what could happen,” and/or “impacting the future.” Encouraging 644 

questioning and conjecturing promotes critical and creative thinking. It also develops 645 

students’ sense of ownership of mathematical knowledge and understanding as 646 
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teachers and students interrogate social positionings of who does mathematics. 647 

Students’ sense of ownership, nurtured through this approach, reflects the living 648 

practice of mathematics as a fluid endeavor wherein all persons are capable of 649 

questioning, creating, and owning mathematical knowledge. 650 

Teachers, of course, can raise purposeful and productive questions as well, moving 651 

beyond questions that demand only simple recall or superficial explanation which 652 

sometimes dominate classroom conversation (Simpson et. al., 2014). To support 653 

students’ content development and to implement the SMPs, teachers should give 654 

careful attention to the types of questions they use. The goal is to use high quality, 655 

probing questions that empower students to deepen their understanding. 656 

The Mathematics Assessment Project (MAP) offers a series of professional 657 

development modules (Mathematics Assessment Project, n.d.) that include Improving 658 

Learning through Questioning. This module provides guidance on how and why to use 659 

open-ended questions and provides examples such as, “What patterns can you see in 660 

this data?” or “Which method might be best to use here? Why?” Questions of this type 661 

take students beyond simple recall of known facts, instead calling for original thought 662 

and connections of concepts. MAP research has found that to draw students into 663 

mathematical conversations, questions must be designed to include all students and to 664 

elicit thinking and reasoning. Teachers should provide think time, support students to 665 

verbalize their thinking, avoid judging student responses, and pose follow-up questions 666 

that encourage students’ continued mathematical thinking. NCTM’s Principles to Actions 667 

(2014) offers further guidance on how teachers can pose purposeful questions to 668 

support mathematical reasoning and justification among students. Additionally, Chapin, 669 

O'Connor, and Anderson’s 2013 book, Talk Moves, provides multiple strategies 670 

teachers can employ to support students’ mathematical discussions, questions, and 671 

conjectures. 672 

As teachers learn to engage in this practice, they might consider writing good questions 673 

down on a card and carrying it around during class for reference (back pocket 674 

questions). Or post questions on the wall as a reminder until they become automatic. 675 
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Examples of good math questions can be found in books by Peter Sullivan and Marion 676 

Small. For example, in Sullivan’s Good Questions for Math Teaching (2002), he offers 677 

examples of good questions, organized by mathematical topics, that drive discussion, 678 

inquiry, and reasoning in math classrooms. 679 

The following snapshot provides an example of how students created mathematical 680 

conjectures and how the teacher supported students’ active discussion of the 681 

conjectures. 682 

Snapshot: Student Conjectures 683 

A teacher presented fourth-grade students with a list of eight equations, noting that not 684 

all of them were true statements of equality. The students worked with partners to 685 

decide which were true and which were false and to explain how they knew. 686 

2 × (3 × 4) = 8 × 3 687 

4 × (10 + 2) = 40 + 2 688 

5 × 8 = 10 × 4 689 

6 × 8 = 12 × 4 690 

9 + 6 = 10 + 5 691 

9 - 6 = 10 - 5 692 

9 × 6 = 10 × 5 693 

Ryan and Anen worked together, and after a few minutes, the teacher could see that 694 

they were very excited. The teacher stopped by their workplace and, after listening to 695 

their explanation and posing a few challenges, invited them to describe their “magic” 696 

trick with multiplication to the class. At the front of the class, Anen wrote equation c, 5 × 697 

8 = 10 × 4, on the board, and asked everyone to use a hand signal to show true or 698 

false. Almost all students indicated it is a true equation. Ryan asked the class about 699 

example d, 6 × 8 = 12 × 4. Again, the class agreed that it is true. 700 
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Anen and Ryan continued, saying that something special was going on, and they had a 701 

conjecture they think probably works all the time, but they want to be sure. They 702 

explained that in 5 × 8 = 10 × 4, they noticed “5” on the left side of the equation is half of 703 

the “10” on the right side, and the “8” on the left side is two times the “4” on the right 704 

side. So, they concluded, trying to use proper mathematical language, and pointing at 705 

the numbers as they spoke, “If you have factors like that where one first factor is half of 706 

the other first factor, and the second factor is twice as big as the other second factor, 707 

they’ll always be equal!” 708 

The teacher called for the class to explore this conjecture and to see whether they could 709 

find a way to prove whether it is always true or not. Now the whole class was interested 710 

and trying to prove or disprove Ryan’s and Anen’s conjecture. 711 

The teacher supported the discussion in several ways by: 712 

● bringing the class together to listen according to class norms such as “everyone 713 

gets to speak” and “we listen carefully to each other’s ideas” 714 

● encouraging the speakers to pause occasionally so that their classmates would 715 

have time to think and try out ideas 716 

● asking students to repeat, revoice, or add on to each other’s statements  717 

● re-stating Ryan’s and Anen’s explanations using precise mathematical terms 718 

● checking with students who are learning English to ensure that they are both 719 

communicating with and supported by their partners during the student-led 720 

presentation 721 

● calling for others in the class to express their own conjectures and challenges 722 

● focusing students’ attention to Anen and Ryan’s explanations and questions  723 

● posing questions to both the presenters and the other class members as the 724 

discussion progressed, such as: 725 

o why is this true? 726 

o will this always work? 727 

o does this work for other operations, or only for multiplication? 728 

o how can we know? 729 



36 

o how are these numbers related? 730 

(end snapshot) 731 

In the above snapshot’s list of teacher supports, student peer revoicing was one of the 732 

strategies listed to encourage students’ questions and help students engage in 733 

mathematical discussion. Peer revoicing can encourage students to ask questions and 734 

help students engage in mathematical discussion. It is a “talk move” between two 735 

people where the contribution of the speaker is restated by the listener, who checks with 736 

the speaker to confirm understanding. It often includes a statement such as, “So I hear 737 

you say…” followed by a restatement of the speaker’s words and then a check for 738 

understanding such as “Is that right?” 739 

Peer revoicing is a powerful routine for promoting shared understanding of mathematics 740 

as well as mutual recognition as young mathematicians. It structures the dialogue 741 

between the speaker and the listener in a way that ensures that the contributions build 742 

meaningfully upon each other. Teacher and peer revoicing can elevate the 743 

mathematical contributions of a student perceived as low-status (Cohen and Lotan, 744 

1997; Cabana, Shreve, and Woodbury, 2014; LaMar, Leshin, and Boaler, 2020). 745 

The following snapshot highlights how peer revoicing helped first graders take turns 746 

sharing, listening, and reasoning about one another’s math ideas. (Derived from 747 

Langer-Osuna, Trinkle, and Kwon’s research, 2019). 748 

Snapshot: Peer Revoicing 749 

Hope, a grade one teacher, introduces peer revoicing during a whole-class carpet 750 

discussion. She wants her young learners to practice a way of interacting that supports 751 

mutual attention and making sense of one another’s mathematical thinking (SMP.3, 5, 752 

6). Using a large rekenrek, she models revoicing with a student partner. The student 753 

partner first states how many beads she sees on the rekenrek and how she knows (DI1, 754 

CC2; 1.OA.3, 6). 755 
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 756 

S: I see eight beads because there are five on the top and three on the bottom and 757 

that’s five, six, seven, eight. 758 

T: So, I hear you say that you see eight beads because there are five beads on the top 759 

and three beads on the bottom and you counted up from five, six, seven, eight. and 760 

that’s how you knew there were eight. Is that right? 761 

S: [nods head] Yup. 762 

Hope then models the language used for the revoicing. “Let’s practice that” she says to 763 

her class. “I hear you say ‘mmmmm,’ is that right?” 764 

The class repeats as a chorus, “I hear you say ‘mmmmm,’ is that right?” 765 

Students then practice at the carpet with their partners, drawing on sentence frames 766 

taped onto the wall as needed and a class set of rekenreks before taking their 767 

rekenreks back to their tables for partner work. 768 

At their table, students take turns representing numbers. Ana represents the number 10 769 

and turns it toward her partner Sam. Sam counts the beads one by one and then states: 770 

Sam: “I see a 10 because there are 1, 2, 3, 4, 5 on the top and 5 on the bottom.” 771 

Ana: “So I hear you say, wait. Can you repeat?” 772 

Sam: [giggles] I said I see a 10 because there are 5 on the top and 5 on the bottom and 773 

that makes 10. 774 

Ana: “So I hear you saying that you see a 10 because there are 5 on the top and 5 on 775 

the bottom, is that right?” 776 
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Sam: “and that makes 10” 777 

Ana: “and that makes 10. Is that right?” 778 

Sam: Yes 779 

Ana: Ok, my turn. You do a number now. 780 

(end snapshot) 781 

In addition to promoting active student questioning and reasoning, teacher and peer 782 

revoicing strategies actively aim to challenge deficit-oriented thinking because all 783 

students are empowered with making valuable contributions toward sense-making and 784 

learning. 785 

Component 5: Prioritize Reasoning and Justification 786 

Reasoning is at the heart of doing and learning mathematics. Through the acts of 787 

reasoning and justifying, more students can begin to see mathematics as a tool to ask 788 

questions about and make sense of their world, rather than as a static set of rules. 789 

When students have opportunities to reason and justify while engaging with open tasks, 790 

their engagement in math increases (Aguirre et al., 2013; Boaler and Staples, 2008) 791 

and they strengthen their identities as members of the mathematics community. 792 

Students’ mathematics achievement is also more likely to increase (Hiebert and 793 

Wearne, 1993; Stein and Lane, 1996) relative to that in classrooms that primarily use 794 

closed tasks requiring low levels of cognitive demand. Not least, students who are 795 

routinely prompted to reason about and justify their ideas build communication skills and 796 

learn to think flexibly and creatively—essential assets for twenty-first century 797 

employment (Mlodinow, 2018; Wolfram, 2020). 798 

Unfortunately, many students don’t get to engage in deep reasoning while doing rich 799 

and open mathematics tasks. The Education Trust report Checking In (2018) describes 800 

middle school mathematics students’ limited opportunities to engage with rigorous tasks 801 

that require discussing and justifying their reasoning. Overall, only 9 percent of 802 
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assignments had high cognitive demand, and the portion of assignments with low 803 

cognitive demand was higher in schools with more students experiencing poverty. 804 

Researchers have consistently documented that students in minoritized groups by race, 805 

socio-economic status, and first language are, disproportionally, not provided 806 

opportunities to engage in rigorous mathematical practices such as reasoning and 807 

justification (Oakes, 1999; Wilson and Urick, 2021). 808 

The Opportunity Myth (TNTP, 2018) documented the experiences of over 30,000 809 

students in grade six to twelve, finding that while 71 percent of students succeeded on 810 

their classroom assignments, only 17 percent demonstrated grade-level mastery on 811 

those assignments. The authors’ analysis found this result partly due to the procedural 812 

nature of the tasks used in classes. Tasks were not on grade level or involved low 813 

cognitive demand. Rarely did students have opportunities to discuss their reasoning and 814 

justify their mathematical thinking. Strikingly, 38 percent of the classrooms with no 815 

grade level assignments were predominantly students of color; only 12 percent were 816 

predominantly White students. 817 

It is imperative to work toward more equitable mathematics teaching and learning. This 818 

framework builds on research suggesting that all students can reason deeply with and 819 

about mathematics and must be provided with opportunities to do so (Boaler and 820 

Staples, 2008; Bieda and Staples, 2020; Thanheiser and Sugimoto, 2022). Ensuring 821 

that all students have routine chances to engage in deep reasoning calls for two key 822 

conditions: teachers using effective teaching practices and classroom structures that 823 

promote student justification and reasoning. 824 

Teachers using effective teaching practices. NCTM identifies teachers’ 825 

implementation of tasks that promote reasoning and problem solving as one of eight 826 

effective teaching practices (Catalyzing Change, NCTM, 2020). To incorporate 827 

reasoning into classroom instruction, teachers must start with productive beliefs about 828 

mathematics teaching and learning. Figure 2.8 expands on productive beliefs presented 829 

earlier in this chapter, focusing here on teachers facilitating tasks rather than providing 830 

information, students playing an active role in sense-making, and teachers challenging 831 
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students to persevere and struggle productively to reason about and express their ideas 832 

(NCTM Principles to Action, 2014). 833 

Figure 2.8 Beliefs About Teaching and Learning Mathematics (continued) 834 

Unproductive beliefs Productive beliefs 

The role of the teacher is to tell students 
exactly what definitions, formulas, and 
rules they should know and demonstrate 
how to use this information to solve 
mathematics problems. 

The role of the teacher is to engage 
students in tasks that promote reasoning 
and problem solving and facilitate 
discourse that moves students toward 
shared understanding of mathematics. 

The role of the student is to memorize 
information that is presented and then 
use it to solve routine problems on 
homework, quizzes, and tests. 

The role of the student is to be actively 
involved in making sense of mathematics 
tasks by using varied strategies and 
representations, justifying solutions, 
making connections to prior knowledge or 
familiar contexts and experiences, and 
considering the reasoning of others. 

An effective teacher makes the 
mathematics easy for students by guiding 
them step by step through problem 
solving to ensure that they are not 
frustrated or confused. 

An effective teacher provides students 
with appropriate challenge, encourages 
perseverance in solving problems, and 
supports productive struggle in learning 
mathematics. 

Source: NCTM, 2014b. 835 

As noted in the sections above, effective mathematics teaching requires that teachers 836 

recognize the out-of-school cultural practices of students as assets, not deficits, and 837 

incorporate those assets as instructional resources or tools. When teachers assume 838 

that cultural, linguistic, and community-based differences are assets, they open up 839 

possibilities for students to use their lived experiences as resources for reasoning and 840 

sense making. 841 

Classroom structures that promote student justification and reasoning. 842 

Classrooms that use open tasks organized around big mathematical ideas and allow 843 

multiple entry points for students often share a similar structure designed to encourage 844 

students’ mathematical reasoning: 845 
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● The teacher launches a problem (or problem context) and uses participation 846 

structures to support equitable engagement (Featherstone et al., 2011). 847 

● Students are allowed to individually process the questions being asked, 848 

understand the problem, and organize their thoughts prior to engaging in 849 

discussion. 850 

● Students work through the problem in peer partnerships or small groups. 851 

● The class gathers for whole-class discussion, reflection, and synthesis, 852 

referencing students’ solutions (Smith and Stein, 2018). 853 

Students can explore mathematical questions, make conjectures, and reason about 854 

mathematics as they work in collaboration with peers during both small group and whole 855 

class discussions. Such discussions create opportunities for teachers and students to 856 

press other students about why they solved a problem in a particular way. This 857 

emphasis on justification—as a classroom practice—can support equitable outcomes 858 

because it gives students additional access to ways of making sense of mathematical 859 

concepts and procedures and provides time for students to make aspects of their 860 

thinking more explicit to themselves and others (National Academy of Sciences, 2018). 861 

Justification can aid in the development of more equitable student outcomes by making 862 

space for a broad range of student ideas to be brought into the classroom discussion. 863 

Establishing classroom norms and routines can support students in attending to and 864 

making sense of their peers’ mathematical ideas and questions in ways that position 865 

one another’s thinking as worthy of taking into consideration (see also Cabana, Shreve, 866 

and Woodbury, 2014). Teachers must create norms and structures that enable all 867 

students to share and discuss ideas inclusively and draw students into mathematical 868 

conversations on an equal footing. An important message for students is the value of 869 

taking mathematical risks. Making mathematical errors and confusions public helps 870 

students make sense of them together, as a classroom of learners. A classroom that 871 

welcomes students’ unfinished thinking normalizes mathematical struggle as part of 872 

learning and positions all learners as belonging to the discipline of mathematics. 873 
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Issues of status, stereotypes, and peer relationships can get in the way of mathematical 874 

sense-making by biasing who participates, and in what ways, in the mathematical work 875 

at hand (Cohen and Lotan,1997; Esmonde and Langer-Osuna, 2011; Shah, 2017; 876 

LaMar, Leshin, and Boaler, 2020; Turner et al., 2013). Whole-class discussions at the 877 

close of a lesson provide opportunities to reflect on the impact of student partnerships 878 

and small-group work so that students increasingly internalize the expectations and 879 

learn the tools of inclusive, productive, shared mathematical work. Teachers might ask, 880 

“What went well in your partnerships today that we can learn from? What was difficult? 881 

What might we try tomorrow to be better partners?” Responses not only allow students 882 

an opportunity to express their thoughts like a mathematician, but the responses can 883 

provide valuable formative feedback for teachers to use when defining the next steps in 884 

the learning progression(s). 885 

Structuring lessons to introduce questions first, allowing students time to consider how 886 

to approach the question, and incorporating student discussion and reasoning are 887 

distinct from the direct instruction approach. Direct instruction involves teaching 888 

students the methods and then providing opportunities to practice those methods. The 889 

two approaches are not mutually exclusive: there are appropriate times to incorporate 890 

direct instruction (Schwartz and Bransford, 1998; Deslauriers et al., 2019). For example, 891 

direct instruction may be especially useful when students need the methods to solve 892 

problems; they may be engaged and interested to learn the new methods being 893 

described (NCTM, 2014b). 894 

Smith and Stein’s text, 5 Practices for Orchestrating Productive Mathematical 895 

Discussions (2018), offers a useful approach to planning and implementing tasks to 896 

support student reasoning. Chapin, O’Connor, and Anderson (2013) provide further 897 

support for teachers in supporting productive classroom discussions, considering the 898 

mathematics to talk about, and incorporating the moves that encourage productive 899 

discussions. 900 

The snapshot below describes a high school classroom in which the teacher structured 901 

a lesson to actively engage students in reasoning needed to solve a problem. The big 902 
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mathematical ideas and standards supported by the lesson are included at the end of 903 

the snapshot. 904 

Snapshot: 36 Fences 905 

Lori, a high school geometry teacher, introduces a problem to students at the start of a 906 

90-minute class period. Lori explains that a farmer has 36 individual fence panels, each 907 

measuring one meter in length, and that the farmer wants to put them together to make 908 

the biggest possible area. Lori takes time to ask her students about their knowledge of 909 

farming, making reference to California’s role in the production of fruit, vegetables, and 910 

livestock. The students engage in an animated discussion about farms and the reasons 911 

a farmer may want a fenced area. While some of Lori’s long-term English learners show 912 

fluency with social/conversational English, she knows some will be challenged by 913 

forthcoming disciplinary literacy tasks. To support meaningful engagement in 914 

increasingly rigorous course work, she ensures that images of all regular and irregular 915 

shapes are posted and labeled on the board, along with an optional sentence frame, 916 

“The fence should be arranged in a [blank] shape because [blank].” These support 917 

instruction when Lori asks students what shapes they think the fences could be 918 

arranged to form. 919 

Students suggest a rectangle, triangle, or square. With each response, Lori reinforces 920 

the word with the shape by pointing at the image of the shapes. When she asks, “How 921 

about a pentagon?” she reminds students of the optional sentence frame as they craft 922 

their response. Lori asks the students to think about this from the farmer’s perspective, 923 

and talk about it as mathematicians. Lori asks them whether they want to make irregular 924 

shapes allowable or not. 925 

After some discussion, Lori asks the students to think about the biggest possible area 926 

that the fences can make. Some students begin by investigating different sizes of 927 

rectangles and squares, some plot graphs to investigate how areas change with 928 

different side lengths. 929 
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Susan works alone, investigating hexagons––she works out the area of a regular 930 

hexagon by dividing it into six triangles and she has drawn one of the triangles 931 

separately. She tells Lori that she knew that the angle at the top of each triangle must 932 

be 60 degrees, so she could draw the triangles exactly to scale using compasses and 933 

find the area by measuring the height. 934 

Niko finds that the biggest area for a rectangle with perimeter 36 is a 9 x 9 square—935 

which gives him the idea that shapes with equal sides may give bigger areas and he 936 

starts to think about equilateral triangles. Niko is about to draw an equilateral triangle 937 

when he gets distracted by Jaden who tells him to forget triangles, he has a conjecture 938 

that the shape with the largest area made of 36 fences is a 36-sided shape. Jaden 939 

suggests to Niko that he find the area of a 36-sided shape too and he leans across the 940 

table excitedly, explaining how to do this. He explains that you divide the 36-sided 941 

shape into triangles and all of the triangles must have a one-meter base. Niko joins in 942 

saying, “Yes, and their angles must be 10 degrees!” Jaden says, “Yes, and to work it 943 

out we need tangent ratios which the teacher has just explained to me.” 944 

Jaden and Niko move closer together, incorporating ideas from trigonometry, to 945 

calculate the area. 946 

As the class progresses many students start using trigonometry. Some students are 947 

shown the ideas by Lori, some by other students. The students are excited to learn 948 

about trig ratios since they enable them to go further in their investigations, they make 949 

sense to them in the context of a real problem, and they find the methods useful. In later 950 

activities the students revisit their knowledge of trigonometry and use them to solve 951 

other problems. 952 

Opportunities for learning – Big Mathematical Ideas and California Mathematics 953 

Standards 954 

• Geospatial Data (G-SRT.5, G-CO.12, G-MG.3) 955 

• Triangle Problems (G-SRT.4, G-SRT.5, G-SRT.6, G-SRT.8, G-CO.12) 956 

• Trig Explorations (G-SRT.5) 957 
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• Triangle Congruence (G-CO.12) 958 

• Circle Relationships (G-CO.12) 959 

• Transformation (G-CO.12) 960 

• Geometric models (G-SRT.5, G-CO.12) 961 

In this snapshot, students have an opportunity to meaningfully and actively engage in 962 

rich mathematical thinking. While some students worked alone, many students are both 963 

incorporating ideas from other students and contributing their own thinking. Through 964 

these actions, students are actively investigating and making connections across their 965 

own work while also seeing their own and others’ ideas as learning assets. 966 

(end snapshot) 967 

Conclusion 968 

This chapter has detailed the five components of instructional design that encourage 969 

equitable outcomes and active student engagement: teaching big ideas, using open 970 

tasks, teaching toward social justice, supporting students’ questions and conjectures, 971 

and prioritizing reasoning and justification. Enacting these components requires that 972 

teachers broaden their perceptions of mathematics beyond methods and answers. The 973 

aim is to have students come to view mathematics as a subject that is about sense 974 

making and reasoning, to which they can contribute and belong. To achieve this, 975 

teachers need to create more opportunities for students to engage in intriguing, deep 976 

tasks that honor their ideas and thinking and draw on their backgrounds, interests, and 977 

experiences. Teachers pose purposeful questions and structure lessons to provide time 978 

for students to engage in mathematical reasoning through small and whole-group 979 

discussions. Such practices can enable all students to see themselves as 980 

mathematically capable learners with a curiosity and love of learning mathematics—981 

capacities that will bolster them throughout their schooling. 982 

Additional Resources 983 
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Teachers may be interested in the following vignettes, each of which provides a 984 

classroom example of practices discussed in this chapter. 985 

Vignette: Productive Partnerships. To successfully launch tasks, teachers should 986 

discuss key contextual features and mathematical ideas, soliciting ideas from students 987 

to create shared language for anything that might be unfamiliar or confusing without 988 

reducing the cognitive demand of the task. Whole-class discussions during the launch 989 

are also important opportunities to support students in learning how to effectively and 990 

inclusively share ideas during small group work. This vignette describes an example of 991 

such a discussion in a fourth-grade classroom. 992 

Vignette: Exploring Measurements and Family Stories. In this vignette a group of 993 

students explores their family’s immigration experiences through a measurement lesson 994 

on the topic of unit conversion, specifically between the US system and the metric 995 

system. Many of the students had experienced immigrating with their families to the US, 996 

knew relatives who had, or have family members living in other countries. Through map 997 

explorations and a series of discussions, students use and expand their math skills. 998 

Vignette: Math Identity Rainbows. In Ms. Wong’s classroom in this vignette, students 999 

start to see mathematics as something that relates to their lives and that can work to 1000 

empower individuals and communities. Tasks are not only deliberately designed to 1001 

engage students in meaningful mathematics, but are also, at times, designed to support 1002 

students in noticing that they are already important members of the mathematics 1003 

classroom community. 1004 

Long Descriptions of Graphics for Chapter 2 1005 

Figure 2.3: Grade Six Map of Big Ideas 1006 

The graphic illustrates the connections and relationships of some sixth-grade 1007 

mathematics concepts. Direct connections include: 1008 

• Variability in Data directly connects to: The Shape of Distributions, Relationships 1009 
Between Variables 1010 

http://staging.cde.ca.gov/ci/ma/cf/documents/mathfwappendixcsbe.docx
http://staging.cde.ca.gov/ci/ma/cf/documents/mathfwappendixcsbe.docx
http://staging.cde.ca.gov/ci/ma/cf/documents/mathfwappendixcsbe.docx
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• The Shape of Distributions directly connects to: Relationships Between 1011 
Variables, Variability in Data 1012 

• Fraction Relationships directly connects to: Patterns Inside Numbers, 1013 
Generalizing with Multiple Representations, Model the World, Relationships 1014 
Between Variables 1015 

• Patterns Inside Numbers directly connects to: Fraction Relationships, 1016 
Generalizing with Multiple Representations, Model the World, Relationships 1017 
Between Variables 1018 

• Generalizing with Multiple Representations directly connects to: Patterns Inside 1019 
Numbers, Fraction Relationships, Model the World, Relationships Between 1020 
Variables, Nets & Surface Area, Graphing Shapes 1021 

• Model the World directly connects to: Fraction Relationships, Relationships 1022 
Between Variables, Patterns Inside Numbers, Generalizing with Multiple 1023 
Representations, Graphing Shapes 1024 

• Graphing Shapes directly connects to: Model the World, Generalizing with 1025 
Multiple Representations, Relationships Between Variables, Distance & 1026 
Direction, Nets & Surface 1027 

• Nets & Surface directly connects to: Graphing Shapes, Generalizing with Multiple 1028 
Representations, Distance & Direction 1029 

• Distance & Direction directly connects to: Graphing Shapes, Nets & Surface Area 1030 

• Relationships Between Variables directly connects to: Variability in Data, The 1031 
Shape of Distributions, Fraction Relationships, Patterns Inside Numbers, 1032 
Generalizing with Multiple Representations, Model the World, Graphing Shapes 1033 

Return to figure 2.3 graphic 1034 

California Department of Education, June 2023 
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